

DPP No. 37

Total Marks : 30

Max. Time : 33 min.

Topics : Fundamentals of Mathematics, Logarithm

Type of Questions		M.M., Min	
Single choice Objective (no negative marking) Q.1	(3 marks, 3 min.)	[3,	3]
Assertion and Reason (no negative marking) Q.2	(3 marks, 3 min.)	[3,	3]
Subjective Questions (no negative marking) Q.3,5,6	(4 marks, 5 min.)	[12,	15]
Fill in the Blanks (no negative marking) Q.4	(4 marks, 4 min.)	[4,	4]
Match the Following (no negative marking) Q.7	(8 marks, 8 min.)	[8,	8]

1. The complete solution set of the inequation
$$\sqrt{x+18} < 2 - x$$
, is
(A) [-18, -2) (B) [-18, -5) (C) (-18, 5)

(D) none of these

Statement-1 : log₁₀x < log_πx < log_ex < log₂x (x > 0 and x ≠ 1) Statement-2 : lf 0 < x < 1, then log_xa > log_xb ⇒ a < b.
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
(C) Statement-1 is True, Statement-2 is False.
(D) Statement-1 is False, Statement-2 is True.

3. If
$$\log_6 \log_2 \left[\sqrt{4x + 2} + 2\sqrt{x} \right] = 0$$
, then $x =$ _____.

4. Given, $\log_a x = \alpha$; $\log_b x = \beta$; $\log_c x = \gamma \& \log_d x = \delta$ (x \ne 1), then $\log_{abcd} x$ has the value equal to _____

5. Solve the equation for x : log 4 + $\left(1 + \frac{1}{2x}\right)$ log 3 = log $\left(\sqrt[5]{3} + 27\right)$

6. Find all integral solutions of the equation $4 \log_{x/2} (\sqrt{x}) + 2 \log_{4x} (x^2) = 3 \log_{2x} (x^3)$

7. Match the following Column – I

Column – II

1

(A) If $\log_4 (x + 1) + \log_4 (x + 8) = \frac{3}{2}$, then value(s) of x is (are) (p)

(B) If
$$|x| + |x - 5| = 6$$
 and $x < 0$, then $\left(x + \frac{3}{2}\right)$ is equal to (q) 4

(C) The value of
$$4\left(3\log_2\frac{81}{80} + 5\log_2\frac{25}{24} + 7\log_2\frac{16}{15}\right)$$
 is (r) 0

(D) The remainder when
$$2x^5 - x^3 + x^2 + 1$$
 is divided by (s) 2
(2x + 1) is k. Then $\frac{16k + 11}{16}$ is equal to

CLICK HERE

>>>

Get More Learning Materials Here : 📕

Answers Key

1. (A) 2. (D) 3. $x = \frac{1}{16}$ 4. $\frac{1}{\alpha^{-1} + \beta^{-1} + \gamma^{-1} + \delta^{-1}}$ 5. $x \in f$ 6. 1, 4 7. (A) \rightarrow (r),(B) \rightarrow (p), (C) \rightarrow (q), (D) \rightarrow (s)

Get More Learning Materials Here : 📕

